Study Finds Rich Kids More Likely to Use Drugs Than Poor

Rich kids from Alameda and Contra Costa counties in California were more likely to use alcohol and other drugs than their peers from poor communities, according to data from California's Healthy Kids Survey.

The Contra Costa Times reported Feb. 19 that disposable income, disconnected families, and pressure to succeed all contribute to drug use among upscale youth, adding that parents in these communities add to the problem by denying that it occurs. "Perfection is very, very valued in affluent communities," noted Madeline Levine, author of "The Price of Privilege."

More affluent kids also can afford to buy fake IDs and can drive to places where they can pay someone to buy alcohol for them, experts note.

Binge drinking and past-month alcohol use among high-school juniors were more prevalent in richer areas of the East Bay than in less-affluent areas, according to the survey, and more juniors from rich towns admitted to having gotten high on drugs. (contd.) "You can make some general assessments that affluent areas have higher alcohol and marijuana use," said Sean Slade, regional manager for the California Healthy Kids Survey.

Kids in affluent areas have lower alcohol and other drug use rates in the lower grades, but often catch up or surpass drug-use rates among poorer youth when they reach high school.

Some upscale communities have turned to "social host" laws to counter permissive attitudes among parents, some of whom believe it is better to allow their children to drink at home with friends than to go out and do it.

The Healthy Kids Survey:
http://www.wested.org/pub/docs/chks_home.html

Excerpt:
In the state health report, 29 percent of 11th-graders in the Acalanes high school district reported binge drinking in the previous 30 days. The district encompasses the area from Walnut Creek to Orinda. In the San Ramon Valley, 26 percent of 11th-graders reported the same.

In the less affluent Oakland and West Contra Costa districts, the number of juniors reporting binge drinking were 14 percent and 17 percent, respectively.
Memory and learning appear to be more affected by marijuana use among adolescent rats than adults

The Durham (N.C.) Herald-Sun reported June 17 that researchers from Duke University and the Durham Veterans Affairs Medical Center administered THC, the active ingredient in marijuana, to adolescent and adult rats and observed their ability to remember and complete a task. The study found that adolescent rats under the influence of THC took 64 percent longer to complete the task than adult rats given the drug.

When the drug was taken away, the differences disappeared; a control group of rats not given the drug completed the task with ease.

“Our younger rats, who model human adolescents, are showing serious impairment,” said lead study author Young May Cha. “That should definitely send a red flag to anyone who’s thinking of using THC.”

A spokesperson for the National Organization for the Reform of Marijuana Laws said that similar research has been conducted before, and said that studies have found no long-term impairment arising from youth marijuana use. But, said senior policy analyst Paul Armentano, "NORML does not believe, as any responsible organization, that the use of intoxicating substances, including marijuana, is a good idea for children."

The research was published in the March 2006 issue of the journal Pharmacology, Biochemistry and Behavior.

Reference:

---

Study Supports 'Rewired' Brain Theory of Addiction

Researchers say that a study demonstrating differing biochemical responses to cocaine among addicted rats supports the theory that the brains of addicts become predisposed to craving.

David Self and colleagues at the University of Texas Southwestern Medical Center found that the dopamine system in the brains of rats that strongly crave cocaine reacts differently that that in rats which are less addicted to the drug.

In the study, the rats were given cocaine, then denied the drug for three weeks. Those that were more addicted were more likely to press a lever that stimulated the D2 dopamine receptor, believed to increase the craving response in the brain, and appeared to be less affected by stimulation of the D1 receptor, thought to inhibit craving.

"It's as if the cocaine-addicted animal is less easily satisfied and more easily induced to seek drugs due to alterations in these receptors," said Self.

"This work shows that there are profound alterations in the brain mechanisms that regulate motivated behavior with addiction," added Self. "It really shows that the addicted person is ill-equipped to cope because the brain is now wired to make them crave drugs more and get less satisfaction out of the drug or other life events that may be rewarding, and this study found biological changes that would explain these behavioral changes."
